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ABSTRACT: The successful engineering of secondary metabolite
production relies on the availability of detailed computational
models of metabolism. In this brief review we discuss the types of
models used for synthetic biology and their application for the
engineering of metabolism. We then highlight some of the major
modeling challenges, in particular the need to make informative
model predictions based on incomplete and uncertain information.
This issue is particularly pressing in the synthetic biology of secondary metabolism, due to the genetic diversity of microbial
secondary metabolite producers, the difficulty of enzyme-kinetic characterization of the complex biosynthetic machinery, and the
need for engineered pathways to function efficiently in heterologous hosts. We argue that an explicit quantitative consideration of
the resulting uncertainty of metabolic models can lead to more informative predictions to guide the design of improved
production hosts for bioactive secondary metabolites.
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■ COMPUTATIONAL MODELS FOR SYNTHETIC
BIOLOGY

Computational modeling has long been an essential tool for the
bioengineering of metabolism. Many of the central concepts of
systems biology have been developed in the context of
metabolic pathway engineering for biotechnology.1 For
example, the unexpected finding that the overexpression of
individual “rate-limiting” enzymes failed to lead to massively
increased product levels gave support to the idea that the
control of metabolic flux can be widely distributed across many
enzymes in a pathway; this in turn became one of the central
concepts of metabolic control analysis and a major justification
for the use of mathematical analysis to understand the behavior
of complex biological systems.1

As synthetic biology is setting for itself increasingly ambitious
aims, the demands on computational modeling approaches are
rapidly growing. In the long run, BioCAD approaches, i.e., the
comprehensive in silico engineering and design of new
biological systems, will depend heavily on computational
modeling.2−4

Two major classes of computational models are commonly
used for the synthetic biology of metabolism: constraint-based
genome scale models and differential-equation-based dynamic
models.5−7 The former type of model is relatively easy to
generate once a genome sequence is available: the enzyme-
coding genes in the genome are identified on the basis of
homology searches, the catalyzed reactions and their
stoichiometry are annotated and combined in a stoichiometric
matrix, and finally missing reactions are added in a gap filling

and manual curation step.8 Both the initial genome annotation
and the necessary manual curation are not trivial, especially for
species that are not closely related to any well-studied model
organisms. Nonetheless, an informative working model can
usually be created without additional experimentation, and
various computational tools are available to automate the
individual steps of this model-building pipeline.9−12 The
resulting models can, e.g., be used to predict the relative
distribution of metabolic fluxes in varying physiological
conditions, such as with and without the production of a
desired metabolic end product,13 and consequently guide the
engineering of industrial strains, as has recently been shown for
the overproduction of platform chemicals in yeast.14,15 For an
example involving secondary metabolite production, we have
used a constraint-based model of the Streptomyces coelicolor
metabolic network to predict changes in relative flux during the
transition from logarithmic growth (when cellular resources are
mainly devoted to increasing biomass) to stationary phase
(when fluxes are mostly directed toward the production of
bioactive secondary metabolites, which are the target
compounds of synthetic biology approaches16). We could
show that the predicted flux changes closely correlated with the
gene expression dynamics observed during the same metabolic
switch17 and that discrepancies between flux predictions and
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gene expression could be used to identify misannotations of
individual gene products in the model (e.g., specialized
enzymes for the production of secondary metabolite precursors,
which had been assigned to functions in primary metabolism,
from which they had originally evolved).
Constraint-based models can also be used to identify

essential enzymes in a metabolic network and, in reverse, to
identify those reactions that are possibly redundant and could
be removed in a genome-minimization strategy. For example, in
Medema et al.18 we used a constraint-based model of
Streptomyces clavuligerus, an industrial producer of secondary
metabolites, to show that a large 1.8 Mb megaplasmid detected
in the genome of this species did not contain any essential
enzyme-coding genes and could be safely deleted to streamline
the genome size dramatically. The feasibility of removing the
entire plasmid was subsequently experimentally confirmed.19

Subsequently, we performed in silico single, double, and triple
enzyme knockouts on the model to identify more than 100
presumably redundant metabolic reactions in the remainder of
the genome;20 together with gene expression data available for

wild-type and industrially optimized S. clavuligerus strains,21

these predictions can be used to inform the iterative further
minimization of this genome, with the aim to create an
optimized superhost for the industrial production of secondary
metabolites, not in the least removing the complex background
of potentially interfering native compounds.22

On a larger scale, the comparative analysis of constraint-
based models can be used to identify bacterial species that are
metabolically preadapted to the overproduction of compounds
of biotechnological interest. To explore this possibility, we
developed a computational tool to compare the theoretical
production limits for a series of secondary metabolite classes in
about 40 different species of actinomycetes.23 We not only
found that there are large variations in the predicted capacities
of different species but also could show that the species that are
predicted to be most productive and versatile are not always
those that are typically used in biotechnology and that
predicted suitability for overproduction does not correlate
with genome size or the complexity of native secondary
metabolism (Figure 1).

Figure 1. Heat map showing the predicted maximal flux toward 15 different secondary metabolites, in genome-scale metabolic models of 41 species
of actinobacteria. Highest relative flux levels are shown in white, lower fluxes in progressively darker shades of red. The maximum flux for each
compound across all species is indicated at the top. The heat map on the left indicates the number of model reactions and metabolites, the genome
size, and the number of secondary metabolite biosynthesis gene clusters in each species. This shows that high predicted flux does not necessarily
correlate with a high complexity of the native secondary metabolism in a species. (Figure based on Zakrzewski et al.23)
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These results are a promising first step toward the
computational identification of a suitable chassis for the
synthetic biology of secondary metabolism. The ability of the
underlying algorithm to analyze the system under multiple,
potentially conflicting, physiological objectives will also be
helpful for understanding the evolutionary trade-offs that lead
to specific system properties that now may be constraining the
industrial optimization of hosts for synthetic biology.24

However, the results also reveal a number of challenges
affecting constraint-based models, which make any conclusions
based on this modeling exercise very preliminary. First, the
underlying models are purely genome-based and, with the
exception of the secondary metabolite biosynthesis pathways,
which were added manually, do not incorporate experimental
information. Second, being constraint-based, the models are
lacking quantitative information on reaction rates and do not
allow predictions on intermediary metabolite levels, which
would be particularly valuable for “debugging” engineered
bacterial strains, which might accumulate toxic intermediates or
deplete critical precursors.25

This indicates that successful bioengineering will require a
more fine-grained, quantitative prediction of cellular behavior,
enabled by a different modeling strategy: differential-equation-
based dynamic models of metabolism, usually based on
ordinary differential equations, not only can describe relative
steady-state flux distributions but also can be used to make
predictions about metabolite levels and the rate of change in
metabolic fluxes following an intervention, whether the result of
genetic variation or molecular engineering, including the use of
quantitative expression systems and regulatory RNA. Most
importantly, dynamic models allow a quantitative identification
of rate-controlling reactions in a metabolic network.
However, dynamic modeling depends on quantitative

information about (1) all enzyme kinetic parameters, (2) all
enzyme activities (preferably for different cellular states), (3)
intracellular concentrations for metabolites, and often (4) the
distribution of metabolites and enzymes across subcellular
compartments. It is obvious that this detailed information is
rarely available for any cellular system, not even for extremely

well studied model organisms or subsets of metabolism. It
would be unrealistic to expect that sufficient data on enzyme
kinetics for classical dynamic modeling on a genomic scale will
ever be available for the main workhorses of biotechnology, in
particular highly diverse groups, such as actinomycetes or
filamentous fungi.
Recently, progress has been made in moving from constraint-

based to dynamic models of metabolism on a large scale, by
incorporating thermodynamic and regulatory information26−32

and automatically generating differential equation systems for
all reactions, sometimes using simplified kinetic equations,
which are then, e.g., explored across a wide range of
thermodynamically feasible parameter values33−35 or are
parametrized using parameter estimates collected from the
literature or collated from public databases of dynamic
models.36 These models can be used, e.g., to perform metabolic
control analysis, identify key reactions that limit flux toward
desired end products, and predict the feasible ranges of
metabolite concentrations for particular physiological states of
the system.

■ DYNAMIC MODELING UNDER UNCERTAINTY
It is obvious that all approaches to generate comprehensive
dynamic models of metabolism will have to operate in the
context of highly unreliable parameter data,37 in particular in
synthetic biology: even where the kinetics of individual
enzymes have been studied, assay conditions will rarely
match the in vivo situation,38 and in an engineered system
the enzymes will by definition have to function in a new cellular
environment. As the parameters will never be known with
certainty, principled approaches to handling the resulting
parameter uncertainty are needed. In a proof-of-concept
study on central energy metabolism in a protozoan parasite,
we have recently shown how dynamic models of metabolism
can explicitly take the uncertainty about each individual
parameter into account (Figure 239).
Starting from a highly curated dynamic model of a small part

of energy metabolism, we identified the experimental
uncertainty (confidence intervals or standard deviations) for

Figure 2. Schematic representation of dynamic modeling with an explicit quantitative consideration of parameter uncertainty. See text for details.
(Figure based on Achcar et al.39)
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every parameter in the model. The experimental evidence and
the calculations underlying the uncertainty assessment were
documented in a dedicated Wiki page for each enzymatic
reaction. We then used a Monte Carlo sampling strategy to
create a large collection of model variants, each with a different
thermodynamically consistent combination of plausible param-
eter values sampled from the confidence intervals. As the
uncertainty of the parameter values was described by a log-
normal distribution for most parameters, more plausible values
tended to be present more often in the sample. The collection
of models could then be subjected to the same types of analysis
as traditional dynamic models, e.g., to determine the flux
control coefficients for individual enzyme parameters, with the
important benefit that the results of these calculations now
come with a confidence interval that reflects the experiment-
based uncertainty about the parameter values in the system,
rather than a general thermodynamic constraint.
This strategy of explicitly incorporating a quantitative and at

least partially experiment-based description of parameter
uncertainty already in the model building process seems to
be of general applicability for synthetic biology and bioCAD
approaches, but it will need a considerable extension of our tool
box, both for model building and for model analysis and
visualization.
Some data, for instance, the kinetic parameters, come with a

straightforward quantitative estimate of our confidence in their
exact values, either from the experimental standard deviation or
because they are predicted using statistical approaches that
quantify their predictive uncertainty. For other types of data
that can inform the model building process, in particular for
large genome-scale models, new methods to estimate the
associated confidence intervals are needed. Global metabolo-
mics and fluxomics data sets are important examples of
information that should be integrated in the model building and
model interpretation stage.40 In the case of metabolomics, often
even the chemical identity of the detected metabolites is
uncertain.41 Current analysis tools tend to circumvent this
problem by either reporting all possible chemical compounds
that could match a detected analyte or by using ranking
heuristics and arbitrary thresholds to identify the most plausible
match. Such strategies are not easily integrated with a modeling
framework that relies on quantitative estimates of the
experimental uncertainty. New statistical approaches to
generate such quantitative estimates and at the same time
provide a rigorous way of assessing the relative merits of
alternative interpretations of the same data sets have recently
been presented in a proof-of-concept study.42 In the case of 13C
fluxomics, the challenge is even more interesting, as here the
interpretation of the data strongly depends on the existing
model of metabolism (i.e., which reactions are expected to be
active in the system43), while the experimental results can also
change our view of the correct model (e.g., because strong
evidence for the activity of unexpected reactions is found44).
This mutual dependency will most reliably be captured in a
statistical framework where both model and data are associated
with explicit representations of uncertainty, which can be
updated iteratively as additional evidence becomes available.
Adding this functionality to the existing flux analysis software
(e.g., ref 45) will be a major challenge, as it entails combining
two computationally very expensive sets of algorithms.
Addressing this challenge will be necessary, considering that
metabolic flux data are not only the most informative input for

model construction but also the main engineering target in the
synthetic biology of secondary metabolite production.46,47

The challenge of parameter uncertainty becomes even more
pressing when regulatory interactions in the metabolic network
are considered. While constraint-based models can incorporate
some regulatory information, e.g., in the form of Boolean
constraints on the presence/absence of particular reactions in
certain conditions, the detailed modeling of regulation has
always been the domain of dynamic differential equation
models. These have been used to describe and understand
some of the most influential regulatory building blocks for
synthetic circuits, including bistable switches and oscilla-
tors.48,49 Being able to quantitatively predict the behavior of
the regulatory circuitry controlling an engineered pathway is
clearly an important requirement for synthetic biology. The use
of libraries of regulatory modules, covering a large part of
parameter space, can partially avoid the challenge but is less
than satisfactory from an engineering perspective. Refactoring
of engineered pathways can remove unknown and uncharac-
terized regulatory interactions50 but is currently not feasible for
central metabolism, which is a prime target for optimization
toward the production of valuable secondary metabolites.51

Thus, not only are the parameters of regulatory cascades far
more difficult to measure than enzyme kinetic parameters, but
we face the additional challenge that the topology of the
regulatory circuitry is only partially known. In this case, the
sampling approach has to be extended to handle explicit
uncertainty about alternative regulatory interactions in addition
to uncertainty about their strength and dynamics.
The challenge can be illustrated, e.g., by the simple two-gene

system implementing the bistable switch controlling antibiotic
production in S. coelicolor. This system has been studied in
detail using differential equations; the model of this very small
and relatively abstract system required 21 kinetic parameters
(rate constants and equilibrium constants), all based on rough
experimental estimates, plus information on the absolute
concentration of 8 regulatory metabolites, proteins, and protein
complexes.52 However, the experimental evidence from some
of the crucial complexes is lacking, and the system also contains
a cis-encoded antisense RNA that could implement an
alternative mechanism to ensure robust bistability of the
switch.53 An explicitly uncertainty-aware modeling strategy
would quantify the confidence intervals for all kinetic
parameters in the model and our initial a priori belief in the
relative merits of the alternative regulatory circuitries. Depend-
ing on the aims of the analysis, one can then sample models
from the alternative topologies according to their a priori
probability, or one can use the relative likelihood of
experimental data under the different topologies to update
the beliefs and (in the ideal case) discard all but one of them as
implausible.
Synthetic biology will always be performed in the context of

incomplete and noisy information, in imperfectly insulated
systems and with poorly characterized parts.54 This special
situation requires new strategies for computational model
building and analysis, which are fully and explicitly aware of the
uncertainty that is inherent in the parameters and topologies of
the models. Acknowledging the uncertainty and incorporating
it in the model building, rather than postponing it to the model
interpretation stage, will enable predictions that come with
specified confidence intervals and can guide truly robust
designs of cellular factories for bioactive secondary metabolites.
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